
Appendix: Enhancing Dexterity in Robotic Manipulation
via Hierarchical Contact Exploration

APPENDIX I
SETTING UP NEW SCENARIOS

In this section, we provide an overview of what are
required when setting up new scenarios. Please check our
code and Appendix II for the actual implementation.

A. Applicability
This framework can be considered for the tasks of ma-

nipulating a single rigid body object in a rigid environment.
Environment components must be fixed and not movable. It
can also be used when there is no environment component
(in-hand manipulation). We need known models of the
object, the environment, and the robot.

The robot used to manipulate the object needs to have
known collision models, and forward and inverse kinematics.
The only parts that can be used to manipulate the object are
the defined “fingertips” on the robot.

B. Setup a new robot/hand
Setting up a new robot is the most complicated part.

Specifically for implementation in our C++ code, a new
class need to be written to inherit a pre-defined abstract class
ROBOTTEMPLATE. The user need to fill some specific pure
virtual functions that covers the following aspects.

1) Contact force models for fingertips: We use the point
contact model for kinematics. However, as the force model
for point contact might be too limited, we allow the use of
other contact force models. The contact force models that
currently exist in our implementation includes:

∙ Point contact
∙ Patch contact: we first approximate the fingertips using

spheres centered at the point contact locations. The
radius of the spheres should approximate the radius of
the contact patch for each fingertip. We approximate the
patch contact using three point contacts at vertices of an
equilateral triangle that is perpendicular to the contact
normal and on the sphere.

∙ Line contact: we approximate the line contact model by
two point contacts on twp ends of the line segment.

2) Forward and inverse kinematics for fingertips: The
users need to provide the forward and inverse kinematics
for the fingertips.

Given the FK and IK model, we precompute the
workspace for each fingertip. For general robot hands, we
first sample joint angles to get the fingertip points in the
workspace through forward kinematics, and then compute
the convex hulls. While hands might differ, we estimate this
process takes about seconds (with C++ implementation).

3) Robot collision model: The users need to provide
the collision model of the robot or the fingertips. If it is
unlikely for the robot links to collide with the object or
the environment, it is be okay to only provide the collision
shape for the fingertips, which will make the computation
much faster. Otherwise, the user could simply provide a robot
URDF model.

4) Contact relocation planner (optional): A contact relo-
cation planner is required for checking whether a collision-
free path exists for a finger to relocate to another contact
location.

5) Contact sampling on the object surface (optional): It
is best that each fingertip are relatively independent on the
kinematic side. If not, our random sampling of robot contacts
on the object surface might have a very high rejection rate
(> 90%). In this case, we need the user to provide a method
for the specific robot in order to more efficiently sample robot
contacts on the object surface.

6) Trajectory optimizer (optional): For the robots that
are under-actuated (like wheeled robots), the users need to
provide Level 3 a trajectory optimizer that finds feasible
object states, robot states, and robot controls given Level
2 outputs as warm-start trajectories.

C. Setup a new task type

After setting up the new robot, we need to enable the robot
to do a certain type of tasks. Two major things to consider
are task mechanics and task parameters for planning.

1) Task Mechanics: Task mechanics include the specific
requirements and dynamical model required by the task. Do
we have to fully exploit the dynamic property of the system?
If yes, we need to have a good trajectory optimization
algorithm for the manipulation system in Level 3 to ensure
the solutions are feasible. If the task dynamics do not involve
the integration of velocity and the robot is fully actuated,
it is not necessary to provide a trajectory optimization
method in Level 3. In these cases, the user only needs to
write a function task-dynamics(object pose, object

velocity, contact info, ...) that solves a one-step
optimization problem. Examples include quasi-static, quasi-
dynamic, closure methods, planar pushing, etc.

2) Design choices: A new task type requires several
design choices to be made and some search parameters to be
tuned. Once the choices are made, changing environments
and objects in the same task type should not require more
tuning. According to our experience, making designs and
tuning parameters are relatively low-effort. We have found

that the planner is not sensitive to specific numerical values
for parameters.

The design choices include task features, action probability
design for Level 1 and 2, reward design, and value estimation
design for Level 1 and 2.

Task features are used in the action probability and re-
ward. Basic features are path length in MCTS, number of
robot contact relocations, and object travel distance. Task-
dependent features like grasp measures or environment con-
tact changes can be added to encourage specific behaviors
like better grasps and less environment contact switches.
For generality, it is important to normalize the features by
ensuring similar values for desired behaviors across different
environments and objects.

There are three action probability functions we need to
define: (1) select a contact mode in Level 1, (2) select
a child (configuration node) for a mode node in Level 1,
and (3) select (time to relocate, contacts to relocate to) in
Level 2. For (1), we often encourage the use of the same
contact mode as the previous one. For (2), we currently
mostly use a uniform distribution. For (3), we would like to
encourage relocating when the contacts are not feasible the
next timestep. However, the definition of these probabilities
is entirely up to the user.

To design the reward function, we use a simple approach
that requires no tuning. Given some feature values as data
points, we first manually label their reward values between 0
to 1 through human intuition. Next, we fit a logistic function
to these data points as the reward function.

Manually value estimation is very flexible. The value
estimation in our method is often used to encourage the
search to visit a node that has been visited but has not found
any positive reward. For example, on the way to the goal
pose, if an object pose is reachable through a sequence of
contacts (check by Level 2), we can assign 0.1 as its value
estimation. Our design principle is to give a small number
to any node that is more likely to find a solution than others.

3) Parameters: The search parameters include MCTS
exploration rates 𝜂1, 𝜂2 in Level 1 and 2. Adaptive parameter
for value estimation 𝜆. In all of our experiments, we let
𝜂1 = 0.1, 𝜂2 = 0.1. We let 𝜆 = 0 if a positive reward has not
been found and otherwise 𝜆 = 1. While tuning the parameters
may slightly improve the performance for specific tasks, we
suspect that most of the time this is not a must. However,
𝜆 might need some tuning if one day we have better value
estimations, like using learned functions.

D. Setup a new environment

If using our preset robots and tasks, the users can eas-
ily setup new environments and objects in one file called
setup.yaml.

When setting up a model for a new environment, it is
usually adequate to use primitive geometries such as cuboids,
cylinders, and spheres in the simulation environment. The
users need to specify the shape parameters and the locations
of the primitive shapes.

E. Setup a new object
For a new object, the users need to provide the object

mesh or specify the primitive shape. Surface points will be
automatically uniformly sampled on the mesh. Each point
(p,n) is represented by its location (𝑝 ∈ 𝑅3) and its contact
normal (𝑛 ∈ 𝑆3) in the object frame. It is usually sufficient
to sample about 100 points. The computation is usually in
milliseconds.

The user also need to provide the object mass, ob-
ject inertia, and friction coefficients for robot-object and
environment-object contacts.

For each new object and environment, the RRT parameters
might need some changes, including the range of object po-
sitions, goal biased sampling probability, unit extend length,
and the weight for rotation for the distance calculation. The
RRT parameters does not require careful tuning, as long
as they roughly reflect the task requirement. For example,
the weight for rotation is good to be set to 1 if the object
bounding box range is between 0.1 - 10 and rotation and
translation are roughly of equal importance. If the object
orientation is not important at all, the weight is good to be
set to 0.01 to 0.1. The unit extend length should be larger
if the object start and goal are very far from each other,
otherwise the planner will be slow. And it should be smaller
if the user expect many different maneuvers required for the
task.

Extra note: to avoid numerical issues, we usually scale
the whole system such that the average length of the object
bounding box is in the range of 1 - 10.

APPENDIX II
EXPERIMENT DETAILS

This section includes the details of the experiments in this
paper. The first two are pure planning experiments. The latter
two are robot experiments.

A. Manipulation with Environment Interactions
1) Robot model: We consider the robots as free-flying

balls, meaning that we do not check for kinematic feasibility
but do check for collision of the balls and the environment.
For the contact force model, we use the patch contact model,
described in Appendix I-B.

2) Task mechanics: We use quasi-static or quasi-dynamic
models. For each timestep, we solve a convex programming
problem to find if there exists a solution for contact force 𝜆𝑐
to satisfy the force conditions. The problem is formulated as
follows:

min
𝜆

‖𝜖𝜆𝑇 𝜆‖
s.t. quasistatic or quasidynamic condition

(1)

where 𝜖𝜆𝑇 𝜆 is a regularization term on the contact forces.
The quasi-static condition requires the object to be under

static force balance for a selected contact mode
[

𝐺1ℎ1, 𝐺2ℎ2,…
]

⋅
[

𝜆1, 𝜆2,…
]𝑇 + 𝐹external = 0 (2)

where
[

𝜆1, 𝜆2,…
]𝑇 are the magnitudes of forces along active

contact force directions
[

ℎ1, ℎ2,…
]𝑇 determined by contact

modes.
[

𝐺1, 𝐺2,…
]𝑇 are the contact grasp maps. 𝐹external

includes other forces on the object, such as gravity and other
applied forces.

Quasidynamic assumption relaxes the requirement for
objects to be in force balance, allowing short periods of
dynamic motions. We assume accelerations do not integrate
into significant velocities. In numerical integration, the object
velocity from the previous timestep is 0. The equations of
motions become:

𝑀𝑜�̇�𝑜 =
[

𝐺1ℎ1, 𝐺2ℎ2,…
]

⋅
[

𝜆1, 𝜆2,…
]𝑇 + 𝐹external (3)

In discrete time, the object acceleration �̇�𝑜 can be written
as 𝑣𝑜

ℎ , where ℎ is the step size. The object velocity 𝑣𝑜
is computed by solving the constrained velocity from the
current pose to the goal pose under a contact mode.

3) Feasibility Checks:
∙ Task mechanics check: is passed if there exist a solution

for Equation 1.
∙ Finger relocation check: during relocation, the non-

relocating robot contacts and environment contacts must
also satisfy the task mechanics, assuming the object has
zero velocity.

∙ Collision check: the spheres must not collide with the
environment.

4) Features: We manually designed the features, as shown
in Table I.

Feature Description

Path size node depth in the Level 1 tree
Object travel distance ratio total travel distance

𝑑𝑖𝑠𝑡(𝑥start ,𝑥goal)

Robot contact change ratio number of finger contact changes
number of fingers

Number of environment contact changes -
Grasp centroid distance 𝑑𝑖𝑠𝑡(𝑐𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 𝑐𝑔𝑒𝑜)

TABLE I: Features for Manipulation with Environment In-
teractions. 𝑐𝑐𝑜𝑛𝑡𝑎𝑐𝑡: the centroid of all contact points; 𝑐𝑔𝑒𝑜: the
geometric center of the object.

5) Action Probability: In Level 1, in choosing the next
contact mode, we design the action probability to prioritize
choosing the contact mode the same as before:

𝑝
(

𝑠1 = (𝑥,mode), 𝑎
)

=

{

0.5 if 𝑎 = previous mode
0.5

#modes−1 else
(4)

In Level 1, in choosing the next configuration, we let
𝑝
(

𝑠1 = (𝑥, config), 𝑎
)

be a uniform distribution for all the
children and explore-new

In Level 2, in choosing a timestep to relocate and the
contact points to relocate, the action probability is calculated
using a weight function 𝑤(𝑠2, 𝑎) designed for each action in
sp(𝑠2):

𝑝(𝑠2, 𝑎) =
𝑤(𝑠2, 𝑎)

∑

𝑎′∈sp(𝑠2)𝑤(𝑠2, 𝑎′)
(5)

The manually designed weight function 𝑤(𝑠2, 𝑎) prefers to
let the previous robot contacts stay as long as possible:

𝑤(𝑠2, 𝑎) =

{

0.5 + 0.5
𝑡max−𝑡𝑐+1

if 𝑡𝑐 = 𝑡max
0.5

𝑡max−𝑡𝑐+1
else

(6)

6) Reward Design: We use all the features in Table I and
follow the logistic function fitting procedure as described in
Appendix I-C.2.

7) Value Estimation: We only use value estimation for
Level 1 nodes. Each node has 𝑣𝑒𝑠𝑡 = 0.1 if any subsequent
Level 2 search is able to proceed past that node. For all Level
2 nodes, the value estimation is simply zero.

8) Search Parameters: In both Level 1 and Level 2, we let
the exploration rate 𝜂1, 𝜂2 = 0.1. Since we only have value
estimation for Level 1, there is only one adaptive parameter
𝜆 for Level 1 only. When no reward > 0 has been found,
𝜆 = 0. After any positive reward is observed, 𝜆 = 1.

B. In-hand Manipulation
1) Robot model: The setup is the same as Appendix II-

A.1. The only difference is that we now have a workspace
limit for each finger.

2) Task mechanics: We use quasi-static models (as de-
scribed in Appendix II-A.2) or force closure [?].

3) Feasibility Check: includes workspace limit check for
fingertips, task mechanics check, and finger relocation check.

Features, action probability, reward, value estimation, and
search parameters are the same as the Manipulation with
Environment Interactions task.

C. Robot Experiment: Dexterous DDHand
1) Dexterous DDHand Overview: Dexterous DDHand is

a direct-drive hand with 4 Dofs. It has two fingers and
each finger has 2 Dofs for planar translation motions. Each
fingertip is a horizontal rod. As a result, we use two endpoints
of the rod to approximate the line contact. We provide the
planner with the forward and inverse kinematics of the hand.
We also provide a contact relocation planner, which follows
the object surface (5mm above the object surface) and goes
to the new contact location.

2) Feasibility Checks: include inverse kinematics check,
collision check, finger relocation force check, finger reloca-
tion path check (are there collisions on the relocation path),
and task mechanics check.

Task mechanics, features, action probability, reward, value
estimation, and search parameters are the same as the Ma-
nipulation with Extrinsic Dexterity task.

3) Execution: Given a planned fingertip trajectory, we
compute the robot joint trajectory using inverse kinematics
and execute it with robot joint position control. In order to
ensure some contact force, we shift the end-effector trajectory
in the environment contact normal direction for

Δposition = Desired contact force
Stif fness

(7)

where the stiffness can be tuned due to the direct-drive
property.

The execution was conducted in an open-loop manner,
meaning that there was no object pose estimation or force
control involved. The system was calibrated to ensure that the
initial object pose errors are kept within a tolerance of 1 mm.
We chose not to provide a formal success rate in our report
since this number lacks significance due to its dependency
on the accuracy of our manual calibration process. However,
as a point of reference, with an initial pose precision of 1
mm, we estimate a success rate of approximately 4 out of 5
attempts.

D. Robot Experiment: Delta Array
1) Delta Array System Overview: The array of soft delta

robots is a research platform for the development of multi-
robot cooperative dexterous manipulation skills. The system
is comprised of 64 soft linear delta robots arranged in an
8x8 hexagonal tessellating grid. Each 3D printed soft delta
linkage is actuated using 3 linear actuators to give 3 degrees
of translational freedom with a workspace of 3.5cm radius
in the X, and Y axes and 10cm in Z-axis. The links are
compliant with high elasticity and low hysteresis, with a
soft 3D printed fingertip-like end-effector attached to it. We
simplify the workspace of each delta robot to be a cylinder
with a 2.5cm radius and 6cm height.

We provide the forward and inverse kinematic models
to the planner. While running the planner, the IK check is
simplified to a workspace limit check (if the contact point
is in the cylinder workspace). We only perform collision
checks for the fingertips, not the links. While doing the actual
execution of the plans, we use inverse kinematics to calculate
the robot joint trajectory from the contact point trajectory. In
order to ensure some contact force, we shift the end-effector
trajectory in the same way as Equation 7, where the stiffness
is manually calibrated.

We relocate contacts by letting the delta robot to leave
the contact in the contact normal direction, go around the
edge of the workspace, and come to the new contact in its
normal direction. The entire plan is executed in open-loop.
Although delta robots may not offer a high level of accuracy
and repeatability, their passive compliance allows for minor
deviations from the planned trajectory to be accommodated.

2) Feasibility Check: include workspace limit check, col-
lision check, task mechanics check.

Task mechanics, features, action probability, reward, value
estimation, and search parameters are the same as the Ma-
nipulation with Extrinsic Dexterity task.

APPENDIX III
RRT FOR ROLLLOUT

The RRT process is summarized in Algorithm 1. The
inputs are the current object pose 𝑥current, selected contact
mode 𝑚selected, and the object goal pose 𝑥goal. If it can find a
solution, it outputs a trajectory from 𝑥current to 𝑥goal. Every
point on the trajectory is (𝑥, 𝑚), where 𝑥 ∈ SE(3) is an object
pose, 𝑚 is an environment contact mode.

At each iteration, SAMPLE-RANDOM-OBJECT-POSE sample
a new object pose 𝑥extend ∈ SE(3). We find the nearest neigh-
bor 𝑥near of 𝑥extend, and attempt to extend it towards 𝑥extend
(line 5 - 15, Algorithm 1). Each extension is performed
under the guidance of a contact mode. If 𝑥near happens to be
𝑥current, we let the contact mode be 𝑚selected chosen by Level
1 MCTS. Otherwise, the function SELECT-CONTACT-MODE
will select the contact mode(s) to perform the extension un-
der. The procedure EXTEND-WITH-CONTACT-MODE extends
𝑥near towards 𝑥extend under the guidance of a selected contact
mode 𝑚 through projected forward integration.

Algorithm 1 RRT for Expansion and Rollout
1: procedure RRT-EXPLORE(𝑥current, 𝑚selected, 𝑥goal)
2: while resources left and the goal is not reached do
3: 𝑥𝑟𝑎𝑛𝑑 ← SAMPLE-RANDOM-OBJECT-POSE(𝑥𝑔𝑜𝑎𝑙 , 𝑝sample)
4: 𝑥near ← NEAREST-NEIGHBOR(𝑥rand)
5: if 𝑥near = 𝑥current then
6: ← {𝑚selected}
7: else
8: ← SELECT-CONTACT-MODES(𝑥near, 𝑥rand)
9: end if

10: for 𝑚 ∈ do
11: 𝑥new ← EXTEND-WITH-CONTACT-MODE(𝑥near, 𝑥rand, 𝑚)
12: if 𝑥new ≠ null then
13: ADD-TO-RRT-TREE(𝑥new, rrt)
14: end if
15: end for
16: end while
17: solution-path ← BACKTRACK(𝑥goal, rrt)
18: return solution-path
19: end procedure
20: procedure SELECT-CONTACT-MODE(𝑥near, 𝑥rand)
21: 𝑝𝑒𝑛𝑣 ← ENVIRONMENT-CONTACT-POINT-DETECTION(𝑥near)
22: 𝑒𝑛𝑣 ← ENUMERATE-CONTACT-MODES(𝑝𝑒𝑛𝑣)
23: for all 𝑚 ∈ 𝑒𝑛𝑣 do
24: if EXTEND-FEASIBILITY-CHECK(m, 𝑥near, 𝑥rand) then
25: ← {𝑀,𝑚}
26: end if
27: end for
28: return
29: end procedure
30: procedure EXTEND-WITH-CONTACT-MODE(𝑥near, 𝑥rand, 𝑚)
31: 𝑥now = 𝑥near
32: while true do
33: if not EXTEND-FEASIBILITY-CHECK(m, 𝑥now, 𝑥rand) then
34: break
35: end if
36: 𝑣 ← VELOCITY-UNDER-MODE(m, 𝑥now, 𝑥rand)
37: if 𝑣 close to zero then
38: break
39: end if
40: ⊳ Projected forward integration
41: 𝑥now ← INTEGRATE(𝑥now, 𝑣)
42: 𝑥now ← PROJECT-TO-CONTACTS-MAINTAINED(𝑥now, 𝑚)
43: if encounter new contacts then
44: break
45: end if
46: end while
47: return 𝑥now
48: end procedure

Next, we explain all the functions in detail.
SAMPLE-RANDOM-OBJECT-POSE sample a new object pose

𝑥extend ∈ SE(3). The probability of 𝑥extend being the goal
pose is 𝑝sample, while the probability of it being a random
object pose in SE(3) is 1−𝑝sample. We can specify the range
limit for the random sample of the object pose.

NEAREST-NEIGHBOR finds the closest object pose to 𝑥extend
in the tree. The distance between two object poses is com-
puted as 𝑤𝑡 ∗ 𝑑𝑡 + 𝑤𝑟 ∗ 𝑑𝑟. 𝑤𝑡 and 𝑤𝑟 are the weights for
translation and rotation. 𝑑𝑡 is the Euclidean distance between
their locations, and 𝑑𝑟 is the angle difference between two
rotations. A simple way to compute 𝑑𝑟 is to first compute the
rotation between two poses 𝑅diff = 𝑅1𝑅𝑇

2 , and convert 𝑅diff
to axis-angle representation and let 𝑑𝑟 be equal to the angle.
In general, the users need to adjust the weights according to
how important object orientation or position is important in
the task. Not much tuning is needed. In our experiment, we
scale the object sizes such that the average length of their
bounding boxes is about 1 to 10. In this case, one can set
the weights using this rule: normal (1), not very important
(0.5), not important at all (0.1).

SELECT-CONTACT-MODE first enumerates all contacting-
separating contact modes, then filters out infeasible mode
through EXTEND-FEASIBILITY-CHECK, and finally returns the
set of all feasible modes.

EXTEND-FEASIBILITY-CHECK has two options in imple-
mentation. The first option involves storing the robot contacts
during the search process. If the current robot contacts pass
the feasibility check in Section ??, the check is deemed
successful. However, if they fail, the check can still be
considered successful if a sampled set of feasible robot
contacts can be generated, ensuring a feasible transition from
the current contacts. The current contacts are then updated
accordingly. The second option finds if there exists a set of
robot contacts that satisfy the feasibility check. Unlike the
first option, this method does not retain information about
robot contacts. Instead, it is consider successful if it can
sample any set of robot contacts, as long as they pass the
feasibility check. The second option is more relaxed as it does
not take into account previous robot contacts and transitions.

EXTEND-WITH-CONTACT-MODE extends 𝑥near towards
𝑥extend as much as possible under constraints posted by
contact mode 𝑚. VELOCITY-UNDER-MODE solves for the
object velocity that get 𝑥near as close as possible to 𝑥extend
with respect to the velocity constraints introduced by 𝑚. We
then integrate the object pose for a small step in the direction
of constrained object velocity, and project the new object
pose back to the contacts that needed to be maintained.

In PROJECT-TO-CONTACTS-MAINTAINED, the contact
mode 𝑚 needs to be maintained. We first perform contact
detection on the object. We then project the object pose
back to where the maintaining contacts in 𝑚 have zero
signed distances.

	Appendix I: Setting up New Scenarios
	Applicability
	Setup a new robot/hand
	Contact force models for fingertips
	Forward and inverse kinematics for fingertips
	Robot collision model
	Contact relocation planner (optional)
	Contact sampling on the object surface (optional)
	Trajectory optimizer (optional)

	Setup a new task type
	Task Mechanics
	Design choices
	Parameters

	Setup a new environment
	Setup a new object

	Appendix II: Experiment Details
	Manipulation with Environment Interactions
	Robot model
	Task mechanics
	Feasibility Checks
	Features
	Action Probability
	Reward Design
	Value Estimation
	Search Parameters

	In-hand Manipulation
	Robot model
	Task mechanics
	Feasibility Check

	Robot Experiment: Dexterous DDHand
	Dexterous DDHand Overview
	Feasibility Checks
	Execution

	Robot Experiment: Delta Array
	Delta Array System Overview
	Feasibility Check

	Appendix III: RRT for rolllout

