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Abstract— Screwdriving is one of the most prevalent as-
sembly methods, yet its full automation is still challenging,
especially for small screws. A critical reason is that existing
techniques perform poorly in process monitoring and failure
prediction. In addition, most solutions are essentially data-
driven, thereby requiring lots of training data and laborious
labeling. Moreover, they are not robust against varying envi-
ronment conditions and suffer from generalization issues. To
this end, we propose a stage and result prediction framework
that combines knowledge-based process models with a hidden
Markov model. The novelty of this work is the incorporation
of operation-invariant characteristics such as screwdriving
mechanics and stage transition graph, enabling our system to
generalize across different experimental settings and largely
reduce the required data and labeling. In our experiments,
a system trained on M1.4x4 screws adapted with very little
non-labeled data to three other screws (M1.2x3, M2.5x5, and
M1.4x4) with widely varying tightening current, motor velocity,
insertion force, and tightening force.

I. INTRODUCTION

Screwdriving is one of the most common assembly meth-
ods [1]. In the consumer electronics industry, hundreds of bil-
lions of tiny screws are assembled every year; however, fully
automating this huge-volume assembly remains challenging,
especially for smartphones [1], [2], [3]. Smaller screws
require tighter tolerance and higher alignment accuracy [4].
Moreover, compared to the well-studied peg-in-hole problem
(e.g., in [5], jamming diagrams for flexible dual peg-in-
hole task were well-studied through large/small deforma-
tion stages, providing theoretical basis for control strategy
design), screwdriving has more process stages and failure
modes; most stages have complicated mechanics involving
multiple contacts with highly variant discontinuous surfaces
[6]. A system capable of online process monitoring, failure
prediction and recovery is necessary for highly automated
solutions [3]. However, existing work is still preliminary.
Most of the previous work can only perform result clas-
sification given known failure modes, which alone cannot
detect irreversible process failures [7] or unknown failures.
Moreover, previous methods are not guaranteed to work
when experimental conditions (e.g., screw sizes) change.

Due to difficulties in screwdriving process modeling,
most failure detection systems are essentially data-driven.
Directly learning from data yields good results. However,
this approach often needs lots of training data and laborious
labeling that requires expert knowledge [7]. Getting tons
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of data is easy in industry. However, collecting a large
dataset that covers various failure modes is extremely time-
consuming and requires extra engineering effort, mainly due
to the “long tail” effect [8]: most failure rates are less than
1%−2%. Hence, can we minimize human effort needed for
data labeling and avoid recollecting data when experiment
setup changes?

To address the robustness and data-efficiency issues, we
propose a system (Fig. 1) that combines process knowledge
with a learning method for stage and result classifications in
an unsupervised and data-adapting manner. With the sensor
signals, we construct knowledge-based process models and
feed them into a hidden Markov model (HMM), through
which we do stage estimation and rule-based result predic-
tion. The HMM automatically adapts and improves as data
feed in. This framework is built on the following facts: the
mechanics (Section IV-A) that dominate individual stages
and the structure of stage transition graph (Fig. 4) does not
change over experiment conditions. Process models (Sec-
tion IV-A) encapsulate local invariant characteristics (e.g.,
mechanics for each stage) in their constraint equations, while
an HMM incorporates a globally invariant stage transition
graph in its transition model. For environment-dependents,
process models treat them as identifiable model parameters,
while an HMM adapts to these variations by updating its
observation models during training.

Our system shows robustness and data-efficiency in the
following ways. First, it performs online stage classifica-
tion and result prediction. Second, with simple and limited
prior knowledge, our system can automatically label a large
amount of data, freeing people from tedious labeling. As
new data accumulate, the system can adapt to minor changes
without human intervention. Third, our system can generalize
and adapt to new experiment setups with little new data.
Fourth, our system can distinguish some unseen situations.
To summarize, our main contributions are:
• The first attempt of unsupervised learning and automatic

labeling in screwdriving, to our best knowledge.
• A fast generalization framework for industrial problems.
• Significant reduction in data collection and labeling, by

taking full advantage of screwdriving mechanics.

II. RELATED WORK

A. Analysis of the Screwdriving Process

A thorough understanding of screwdriving process is crit-
ical for reliable and accurate fault detection. Typically, the
process can be segmented into several stages through the



Fig. 1. our online stage estimation and result prediction pipeline

torque-angle curve [9]: initial mating, rundown, and tighten-
ing. Recently, [7] presents a more complete stage transition
graph, covering multiple process stages and result classes. A
standard operation often consists of approach, initial thread
mating, rundown and tightening, while other stages like hole
finding or no screw spinning occur with alignment error
or pick-up failure. Each stage has different sensor signal
signatures and process models. In initial mating, contact
models are studied by [10], [6] and [11]. A force spike
can be used as an indicator [11] [7]. In rundown, quasi-
static analysis shows that the oscillation phenomenon is an
important signature [12]. In tightening, torque, rotation angle
and torque-angle gradient [13] are commonly used for failure
detection. In Section IV-A, we combine these features with
our own analysis to develop screwdriving process models.

B. Fault Detection for Threaded Fastening

In industrial screwdriving, the most common fault de-
tection approach is the teach method [1]. Correct torque-
angle fastening signatures are collected as reference, and
then compared with actual signals using limit check or
trend check [14]. The teach method is easy to implement,
but it lacks flexibility and generality. To overcome these
problems, intelligent screwdriving systems are developed,
most of which fall into two categories: model-based and data-
driven. Model-based methods [15] require analytic models
and accurate system parameters. Model-based approaches
are flexible, but accurate system models are hard to obtain.
Data-driven methods, such as ANNs [16], SVMs [12], GTC-
DF [7], decision trees [3], and CNN [17], directly learn
from labeled data. Data-driven methods do not require prior
knowledge, but they requires a large amount of data.

C. Discrete State Estimation in Manipulation

A typical robot task often includes a series of discrete
states [18], which can be formulated by Markov model or
hybrid systems. Our approach is a combination of these two
methods. Hybrid models are incorporated to augment the
HMM, while the HMM keeps learning and modifying the
hybrid model parameters.

The Markov model approach is probabilistic. HMMs are
used to perform automatic action segmentation in [19] and
[20]. In [21], which is very related to our work, contact
states are predicted by combining contact model estimation
with HMM. Contact states are modeled with unspecified
parameters estimated from observations, while HMM acts as
an acceptance test to predict the most likely state. Its major
difference to our work is that we use HMMs to refine and
adapt. Hybrid system approach is more deterministic, which

Fig. 2. Intelligent robotic screwdriving system for data collection.

incorporates simplified mechanical models to approximate
complex robot behaviors, to reason about mechanisms and
to perform feedback control [22] [23]. A discrete state is
identified when the state variables fall into the corresponding
domain [24].

III. DATA COLLECTION

Our data is collected using the robotic system in Fig. 2.
By using a “floating structure” [3] design, the forces and
torques exerted on the screwdriver tip can be measured by
a 6-axis force/torque sensor. This system is an upgrade of
our previous system used in [7] [8], where more detailed
descriptions can be found. In each operation, a screw from
the tray is first picked up by the screwdriver using vacuum
suction. Then the robot moves above the calibrated screw
holes on a plate. The screwdriver motor turns on and
starts collecting data as the screw insertion starts. Each run
terminates when the motor current or motor angle reaches
the specified limit. The system records robot positions, 6-
axis F/T data, motor current, motor encoder readings, linear
potentiometer values that measure the spring displacement
(to trace the screwdriver tip), and videos (as the ground truth)
from a high-speed camera. A typical successful run looks
like Fig. 3. For this paper, we collected experiment data of
different sized small screws and different experiment setups.
The detailed information is given in Section V.

IV. METHODS

An overview of our system is as follows. First, all possible
stages during the screwdriving process are specified and
modeled as constraint equations. Second, the model residuals
of constraint equations are used as inputs of HMM, which
can be trained with or without labels. Once the stages are



Fig. 3. An example of collected raw sensor data.
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Fig. 4. The stage transition graph in the screwdriving process

predicted by HMM, results (success or different failure types)
are inferred from stages using rules constructed from the
stage transition graph. Third, given new data from similar
experimental setups, a well-trained system generalizes to
new data by parameter specification and HMM learning —
our system quickly adapt to new experiment setups. Fig. 1
shows the pipeline of our online stage estimation and result
classification.

A. Modeling of the Screwdriving Process

Screwdriving process can be modeled through mechan-
ical knowledge and empirical observations. Our modeling
includes building a stage transition graph, designing a feature
set, and modeling stages as constraint equations.

1) State Transition Graph: A screwdriving operation can
be modeled as a sequence of discrete states, which are de-
noted as stages. The stage transition graph (Fig. 4) describes
all possible transitions among the stages of our system.
All operations begin at approach. A standard successful
operation is followed by initial mating, rundown, tightening
and stop, while hole finding stage could appear when there
are alignment errors. Different types of failures are indicated
by their process stages, such as no screw spinning and cross-
tightening correspond to results no screw and cross thread.
All operations end at stop. A well-defined graph enables
us to clearly and separately model screwdriving process,
because we assume each stage has only one dynamic model.
Moreover, this graph is used as the HMM state transition
model. Note that this graph is modified from our work in
[7]. Compared to the previous graph, by exerting proper
insertion force during operation, stages and results related to
stripped happen very rarely, thus can be removed from the
stage transition graph and better to be treated as anomaly.

2) Feature Extraction: Feature extraction pre-processes
the raw sensor data before stage modeling. We design a
feature set based on previous work and our observations.
These features enable complicated process models to be

transformed into mostly linear equations of features and
parameters, making parameter estimation and generalization
easier. At timestep t, a set of features is extracted from the
signal data in a fix-sized interval of time before t:

νx, νy, νz: frequency of the maximum amplitude of forces
by discrete Fourier transform. The oscillation phenomenon of
the forces on x and y axis is only found in the rundown stage
of robotic screwdriving task [12]. Under small alignment
error assumption, the frequency approximately equals the
screwdriver motor rotational speed.

dtip: the distance from screwdriver tip to the screw hole. It
is a strong indicator of the process status. It is calculated as:
dtip = rz− hz− lz, where rz is the screwdriver end position
on z axis, computed from the robot positions. lz is the
compression of linear potentiometer, and hz is the z-value
of the calibrated hole location.

∆dtip : the change of screwdriver tip distance in the time
window, ∆dtip = max(dtip)−min(dtip).

ktip: the gradient of screwdriver tip distance. It is computed
by least square estimation for dtip = ktipt. The other gradients
in the following are also computed in the same way.

kta: the torque-angle gradient. This feature is widely used
in torque control threaded fastening for indicating the status
of tightening, whether in elastic zone or yield zone.

kt : the z-axis torque-time gradient.
k f : the z-axis force-time gradient.
kc: the motor current-time gradient. Our screwdriver em-

ploys a direct-drive motor; the motor torque is proportional to
the motor current. It is used as a redundant feature to provide
more robust information against relatively large noise on the
torque sensor.

∆ f z: the change of force on the z-axis, ∆ f z = max( fz)−
min( fz), where fz is the z axis force in the time window. A
drop of z-axis force often indicates the alignment or mating
of screw threads [11].

µf, σf: the means and variances of forces.
3) Stage Models: Each stage is modeled as a set of

constraint equations using physics or process knowledge.
After stage models (constraint equations) are obtained as
one large set of constraints, the model errors are used as
the input to the HMM to perform stage estimation. Some
stage model parameters can be specified from the experiment
setup (setup parameters): Vm, H1, H2, C1kta, and C1kc. Other
parameters are learned from the labeled data before HMM
training (learned parameters): C1ktip , C1k f , C2ktip , C2k f , C2kta,
and C2kc. The meanings of these parameters are explained
later in this part.

Our stage models are constructed as follows:
approach: no contact between the screw and target hole,

thus zero forces are assumed: µf = 0; σf = 0.
hole finding: the screw moves around without insertion,

while the change of screwdriver tip distance is zero: ∆ f z = 0.
initial mating: We consider a smooth mating, where the

screw is inserted with a constant velocity C1ktip and a constant
gradient of force C1k f : k f −C1k f = 0; ktip−C1ktip = 0.

rundown: vibration phenomenon occurs in this stage,
indicating the rotation of the center axis of screw [12].



The vibration frequency can be approximated by motor
velocity Vm. At the same time, the screw goes down with a
constant velocity C2ktip and a constant gradient of force C2k f :
νx−Vm = 0; νy−Vm = 0; k f −C2k f = 0; ktip−C2ktip = 0

tightening: for a successful tightening, the torque-angle
gradient must satisfy a preset value C1kta to ensure correct
tension. Since the motor current is proportional to screw-
driver torque, the gradient of current should also approxi-
mately equal a constant C1kc. The distance of screwdriver
tip to the screw hole surface is the thickness of screw head
H1: kta−C1kta = 0; kc−C1kc = 0; dtip−H1 = 0.

cross tightening: the same model as tightening but with
different model parameters C2kta, C2kc and H2. The torque-
angle gradient is much smaller than that of tightening due to
angular errors. When cross-threaded, only the first external
thread is mated at the cross-thread angle [10], thus the
screwdriver tip distance can be computed as H2 = l ·cos(θ),
where l is the screw length and θ is the cross-thread angle.

no screw spinning: a vibration of z-axis force at the
frequency of Vm occurs when the spinning screwdriver tip
contacts with the screw plate or the screw hole, and being
periodically pushed back: νz−Vm = 0.

stop: the screwdriver motor stops, thus the motor current
mc and motor velocity mv are zero: mc = 0; mv = 0.

B. Stage Prediction by Hidden Markov Model

Given data from a screwdriving operation, features are
first extracted. For each stage, the residuals of its constraint
equations are computed. Then these stage model residuals are
passed to a hidden Markov model to make stage prediction.
Given a time series of observations, an HMM can estimate
the sequence of states which generate these observations.

1) HMM Representation: An HMM λ is composed of
states S, initial state distributions π , state transition distri-
bution A, and observation probability distributions B [25].
When the states are given, a compact notation of the HMM
parameters is λ = (A,B,π). In our system, the hidden states
S = {S1,S2, . . . ,SN} are the stages in Fig. 4. The state at
time t is denoted as qt . The initial state distribution is the
probability of each state that appears at the start, denoted as
π = {π1,π2, . . . ,πN}, where πi = P(q1 = Si).

The state transition probability matrix A= {ai j} represents
the probability of state S j occurs after Si, where ai j =
P(qt+1 = S j|qt = Si),1 ≤ i, j ≤ N. If there is no edge goes
from Si to S j in the stage transition graph, we have ai j = 0;
otherwise ai j > 0.

The observation probability distribution P(Ot |qt = Si) pro-
vides the probability density that the observation at time t
(Ot ) emitted by hidden state Si. Ot includes robot positions,
6-axis F/T data, motor current, motor encoder readings, and
linear potentiometer values as in Section III. In our method,
the P(Ot |qt = Si), written as bi(Ot), is represented in the
form of multivariate Gaussian distribution:

bi(Ot) =
1√

(2π)k|Σ|
exp(−1

2
(xit −µi)

T
Σ
−1(xit −µi)

where xt is the residuals of all constraint equations computed
from Ot as in Section IV-A; µi,Σi are the mean vector and
covariance matrix of the model residuals for state Si.

2) Stage Classification: Stage classification is, at the latest
timestep T , to find the state sequence that maximize its
joint probability P(q1,q2 . . .qT ∧O1,O2 . . .OT |λ ) with the
observation. Viterbi algorithm, a dynamic programming al-
gorithm, can solve this problem efficiently [25]. The forward-
backward procedure is performed firstly. The forward vari-
able is defined as αt(i) = P(O1,O2 . . .Ot ,qt = Si|λ ). It
can be solved inductively as: α1(i) = πibi(O1); αt+1(i) =
∑

N
j=1 αt( j)a jibi(Ot+1). Similarly, the backward variable

βt(i)=P(Ot+1,Ot+2 . . .OT |qt = Si,λ ) can also be inductively
solved as: βT (i) = 1; βt(i) = ∑

N
j=1 ai jb j(Ot+1)βt+1( j).

We define the most probable state sequence ended with
Si at timestep t as mppi(t), and its probability δi(t) =
maxq1...qt−1 P(q1,q2 . . .qt−1 ∧ qt = Si ∧O1 . . .Ot). The most
probable path computation is:

δ1(i) = πibi(O1)

δt+1( j) = δt(i∗)ai∗ jb j(Ot+1))

mpp j(t +1) = [mppi∗(t),Si∗ ]

where i∗ = arg maxi δt(i)ai jb j(Ot+1). During the screwdriv-
ing process, at each timestep t, the current state sequence is
predicted as mmp∗j(t +1), where j∗ = arg max j δt( j).

3) Data Adaptation: HMM can iteratively adjust to better
models as data accumulate using Expectation-Maximization
algorithm [25]. In our case, data adaptation is achieved by
updating the mean µ and variance Σ of the multivariate
Gaussian observation model.

The probability of observing state Si for all i = 1, . . . ,N
can be computed as follows:

γt(i) = P(qt = Si|O1 . . .Ot ,λ ) =
αt(i)βt(i)

∑
N
j=1 αt( j)βt( j)

Thus the mean and variance can be updated similar to the
weighted sum:

µ̂i =
∑

T
t=1 γt(i)xt

∑
T
t=1 γt(i)

, Σ̂i =
∑

T
t=1 γt(i)(xt − µ̂i)(xt − µ̂i)

T

∑
T
t=1 γt(i)

Since the starting states can only be S1, approach, we
have π = {1,0,0,0,0,0,0,0}. The state transition matrix A
is empirically initialized through expert knowledge. If there
exists an edge from Si to S j, ai j should be constrained as
nonzero during training. For observation probability bi(Ot),
all the Gaussian means are initialized as zeros. The covari-
ance matrix, as a diagonal matrix, is the key to differentiate
states. For state Si, the elements in Σi that correspond to its
own constraint equations in all equations are initialized to
be small, while the variances corresponding to other state
constraint equations are set large.

4) Anomaly Detection: We detect anomaly for unknown
stages or impossible path patterns. Unknown stages are those
have observation probability very close to zero for each state.
Impossible path pattern means no possible transition between
the the possible states corresponding to the observations. The
two cases both mean that the probability of all the observa-
tions is zero, written as P(O1 . . .OT |λ ) = ∑

N
i=1 αT (i) = 0.



C. Rule-Based Result Prediction

There are five types of results, which can be inferred
from stage sequences [7]: success, cross thread, no screw,
no hole found and partial. The rules for result prediction are
constructed as follows:

1) If certain failure stages are detected, such as cross
tightening and no screw spinning, the system will predict
the corresponding failure types, cross thread and no screw.

2) If the time of hole finding or initial mating (with large
forces) stage exceeds certain threshold, this indicates large
non-correctable alignment error that might damage the screw
plate. The system will predict no hole found.

3) If the operation follows the red path on Fig. 4, then the
system will proceed to condition check, which will examine
the final insertion length, tightening torque and tightening
torque-angle gradient. The result is predicted as success if
condition check is passed, otherwise partial.

D. Generalization

Previously trained HMM cannot be directly applied when
the operation conditions change. However, our system can
quickly generalize to new experiment conditions. First, we
change the setup parameters according to new experiment
setup as in Section.II-A.3. Then, learned parameters are es-
timated from previous data. For example, in cross tightening
and tightening, we often have 5C2k f =C1k f . This relationship
is estimated from old process models and can be used as a
good initialization for the new dataset to generalize. These
estimated parameters do not need to be accurate because we
can always use data adaptation to refine. The new HMM
keeps improving as new experiment data feeds in.

V. EXPERIMENTS

A. Dataset

We collected four datasets under different operation con-
ditions as in Table I. The tightening current is the motor stop
threshold. The insertion force is the z-axis force exerted on
the screw when screwdriving operation starts. The tightening
force is the z-axis force at the time when screw tightening
finishes. We uniformly sample all data at 100 Hz.

To further evaluate the robustness of our system, for all the
dataset, we collect data with both high precision alignment
(1/4 of total) and random alignment errors (3/4 of total). For
high precision alignment data, accurate positions of screw
holes are given to the robot. The random alignment errors
include translational errors (in the range of 0 to 40% of screw
diameters) and angular errors (0 to 6◦ of the screwdriver
axis to the screw hole). Compared to the industrial data,
our data have much more unexpected and deviated patterns,
which largely increase the difficulty for prediction. The
actual average rate of successful operations in our dataset
is around 75%.

B. Implementation

We implemented our system in MATLAB. In process
modeling, the setup parameters are manually modified ac-
cording to our operation settings. The learned parameters are

TABLE I
DATA COLLECTION SETTINGS

dataset 1 2 3 4
screw size M1.4x4 M1.2x3 M2.5x5 M1.4x4

number of samples 396 386 196 35
tightening current (mA) 1600 1300 3200 2400

motor velocity (rpm) 80 96 80 320
insertion force (N) 10 6 18 10
tightening force (N) 20 14 30 20

estimated from the 10 labeled well-aligned operation samples
from dataset 1. The parameter estimation is solved as a least
square problem. We implement the HMM based on [25]. The
proper initial values of covariances corresponding to their
state constraint equations can be set as 1/10 of corresponding
constant terms, if not available in parameter estimation. The
other large error variances can be initialized as 100 for small
screws; these values are empirical. During training, to ensure
convergence, the mean and covariance in observation models
are constrained within ±15% change of the initialization.
The HMM is considered converged when the change of log
likelihood of observations is less than a set threshold of 30.
Our HMM training often converges after 8-10 batches in less
than 3 minutes with 50 samples in each batch. Rules of result
prediction are constructed as if-else statements.

C. Results

Some selected operations are firstly visualized. The actual
performances of our method are then evaluated by failure
prediction accuracy.

1) Stage and Result Classifications: Fig. 5 visualizes the
stage classification of our HMM on high accurate align-
ment data and random alignment error data before and
after training. The HMM before adaptation (HMM before)
only initialized on 10 accurately aligned samples, while the
HMM after adaptation (HMM after) makes adaptation on
50 unlabeled samples of both alignment types. All HMMs
are tested on new samples that have never been seen by our
system. This comparison emulates our HMM adapting to new
data as the experiment conditions gradually change. HMM
before makes reasonable prediction on accurate alignment
data for all types of failures. With data adaptation, HMM
after learns better stage models. For example, in Fig. 5 (a),
HMM after predicts to extend the period of initial mating to
exactly where an expert label would be. In Fig. 5 (c) and
(d), the predictions for crossthightening are narrowed down
to the right period that cross-thread occurs. As errors are
introduced, HMM before makes more mistakes because of
the deviation of the signal data. HMM after adjusts to errors
while maintains performance on accurate alignment data.

2) Anomaly Detection: Fig. 6 shows three anomaly cases
our system detected. It is even hard for human to tell what
happened simply from the signals. By checking the videos,
we found that: for anomaly 1, the screws failed matching the
screw hole, and the screwdriver was stuck by the head of the
fallen screw. For anomaly 2, the screw was cross-threaded
and accidentally stripped due to misalignment. In anomaly
3, the data connection was lost for two seconds.
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Fig. 5. Illustrative samples of stage classification selected from our dataset. Comparison of the stage predictions before and after data adaptation on high
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due to space limitations. The actual result for each operation is shown on the top of the figure.
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3) Generalization: As shown in Fig. 7, without any label,
our method generalize to dataset 2, 3 and 4. In dataset 2,
we use tiny screws. The tightening torque is much smaller,
making the noise-signal ratio of the torque sensor as high
as 50%. Our method can reduce the influence of noise
by exploiting known meaningful models. In dataset 3, the
screw size is almost 2 times of that in our original dataset.
This verified that our model can be adapted to much larger
screw sizes and tightening torques. In dataset 4, the system
generalizes to a motor speed over four times faster than the
original dataset. In real factory scenarios, screwdriving motor
speed varies and can be really fast.

D. Evaluation

We evaluate our method using the accuracy of result
prediction (Table.II), the proportion of correctly predicted
results in all the samples. The correctness of stage classifi-

TABLE II
RESULT ACCURACY

dataset 1(accurate) 1(error) 2 3 4
HMM type original generalized

adapt before 97.47% 77.27% 89.90% 91.33% 88.57%
after 98.48 % 84.85% 91.71% 94.38% 91.43%

cation can be told through visualization. Our classification
visualization can be found in our GitHub repository. We do
not directly measure the performance of stage classification
because manually labeling the stages is extremely time con-
suming. The result prediction, inferred by predicted stages,
can indirectly show the effectiveness of stage classification.

Our models obtained over 97% result prediction accuracy
for the original ones with parameter estimation from labeled
samples. The generalized HMMs, initialized with known
experiment setup parameters and trained on unlabeled data,
still make reasonable predictions. By data adaptation, our
model can automatically fit to the actual data and make more
accurate predictions. Note that we intentionally increase the
difficulty for prediction, thus our result accuracy is not com-
parable to the desired 99.9% for industry use. For example,
for dataset 1, we introduce alignment errors, producing many
largely deviated signal patterns. The HMM is trained with
limited data that cannot cover these deviations. This is not
a problem for industrial use, where operations are highly
accurate and repeatable.
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Fig. 7. The visualization of the generalization of our system on dataset 2
(force and torque profiles), dataset 3 and dataset 4 (force profiles only).

E. Limitations

At data adaptation, we found one stage model might fit
to another stage, because prediction errors can accumulate
and reinforce when training without labels. To prevent this,
we add constraints on the mean and covariance. However, to
actually solve this problem, we need observation models with
higher capacity, but complicated models require more data
and labeling to train. One possible solution to this trade-off
is introducing human correction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a failure detection system which
can perform stage and result prediction under limited data
resource. This system combines known process models with
a HMM. With a good estimation of process models, our
system can perform unsupervised learning as unlabeled data
accumulate, as well as generalize to similar but different
screwdriving operations. We show that even with simple prior
process knowledge and very limited data, we can develop a
robust failure detection system. This method can be extended
to processes similar to screwdriving (complex underlying
models but limited human knowledge).

Our future work includes accuracy improvement through
human correction, alignment error estimation and recovery
strategy development. Data adaptation can be improved if an
expert spends a little effort telling whether the predictions are
correct. Moreover, predicting real-time stages is not enough.
The system should also be able to specify the magnitude of
failures, such as alignment error values.
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